
ix

Preface

This book is an outgrowth of the notes and experiments developed for the graduate
classes at the University of Florida.  It is intended for students, hobbyists, engineers,
and scientists who would like to learn about the 8051 microcontroller.  It takes a
hands-on pragmatic approach with applications focused on mechatronics and
robotics.  The subject material and example software are interspersed to aid the
fluidity of the learning experience.  The examples build towards mechatronics
applications, merging the mechanics and electronics.  In this sense, the topic area is
oriented towards systems integration, not only in mechanics and electronics, but also
in hardware and software.  DC motor control, sensing environmental variables such
as light and temperature, and the various electronic circuitry given in the following
chapters have immediate applications to robotics.  The book concludes by building an
autonomous mobile robot.  The robot is viewed as an experimentation platform upon
which the reader may add other hardware and software components.

This book should be read while the accompanying experiments are implemented
concurrently. The reader needs access to an 8051 board, available from various
manufacturers (see Appendix D for a list).  Most of the experiments may be carried
out with the standard 8051 microcontroller.  A few examples use enhanced members
of the family to illustrate some newer peripherals.  The software is developed with the
READS51 integrated development environment from Rigel Corporation. READS51
and the source code for all the experiments are available from the web site
www.rigelcorp.com (see Appendix A). The experiments are written in READS51 and
downloaded to the boards to run. READS51 contains an editor, an assembler, a C
compiler, and serial communications module for the host PC to communicate with the
board.  The software runs on an IBM PC and requires the Microsoft Windows
95/98/NT operating system. The reader needs access to a personal computer to
conduct the experiments.

Since the experiments focus on interfacing the microcontroller, a good set of
laboratory test and measurement instruments is recommended.  A basic voltmeter
and a logic probe will go a long way in debugging hardware.  A logic probe may be
built simply be connecting an LED to a 470-ohm resistor.  Laboratory studies,
especially for demanding applications, would benefit from a logic analyzer and an
oscilloscope.  The Hewlett Packard HP54645D mixed signal storage oscilloscope was
used in the development of the experiments in the book.  Such oscilloscopes are
particularly suited for microcontroller circuits, since they display both digital and
analog information.  The digital and analog signals may be stored and analyzed,
similar to features found in logic analyzers.  They also measure times and voltages.



The chapters progress from specific low-level concepts toward the more modular
high-level software structures.  Readers with some previous programming skills may
simply follow the chapters in succession, implementing the experiments along the
way. Readers should download an 8051 microcontroller data book from the web site
of one of the manufacturers (see Appendix D).  The data book is the definitive source
of complete information about the microcontroller.  In fact, it is useful to download the
data books of several manufacturers, since each data book has unique application
notes and sample software.  The reader should also download data sheets of the
integrated circuits and transistors used in the experiments.  Almost all data sheets
include sample circuits and operating principles.

Chapters 1 and 2 provide the foundation. They discuss the 8051 architecture,
memory spaces, input/output (I/O) ports, instruction set, and programming. There are
sample assembly and C programs to illustrate the use of the 8051 instructions and
access the I/O ports. The READS51 compiler uses inline assembly to access the low-
level microcontroller functions.  We find this particularly useful for the learning
experience as it provides an awareness and appreciation for machine-level concerns.

Chapter 3 discusses serial I/O. It is an example of using one of the 8051 peripherals,
namely the serial port.  Again, sample software is given in C and assembly. Modular
programming practices are illustrated as high-level functions (such as “printf()”) are
written to call the lower-level functions (such as “putc()”).

Chapter 4 deals with the I/O ports and external circuitry to drive high-current loads.
This chapter also introduces the concept of “interrupts.”  Experiments include running
stepper motors and interrupt-driven inputs.

Chapter 5 discusses the 8051 timers. Both timing and counting functions are
presented and illustrated with sample code.  The power of timers, when combined
with interrupts, as system timekeepers is illustrated with sample code. The use of
pulse-width modulation as a means to vary the output energy is discussed and
illustrated with a motor speed control experiment.

Chapter 6 investigates analog-to-digital (ADC) and digital-to-analog conversion
(DAC). Besides the on-chip ADC units, the experiments are given for an external
timer and an external serial ADC unit.  The DAC is performed with an external serial
DAC unit.  These experiments also illustrate interfacing to intelligent integrated
circuits and subsystems.

Chapter 7 is the capstone experiment, combining all the tools, techniques, and
concepts into building a roving robot.  The motor drivers of Chapter 4, the interrupt-
driven timebase of Chapter 5, and the ADC of Chapter 6 constitute the modules of
the final application.  A general high-level application software structure is developed
using the concept of state spaces.
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The reader is assumed to have some programming knowledge.  A brief review of the
C programming language is given in Appendix B.  Readers who are familiar with other
programming languages may refer to this appendix.  Appendix C explains the
decimal, hexadecimal, binary, and binary-coded decimal numbers.

The subject of embedded control and microcontrollers is a very rapidly changing field.
Even the mature architectures like the 8051 display a flurry of activity as new
members of the family are introduced and new and more powerful development tools
are made available.  Much information and resources are available on the web.  We
strongly suggest that the reader closely follow the field by periodically checking the
relevant web sites.  Appendix D lists manufacturers and information sources as of
January 2000.

Sencer Yeralan and Helen Emery
Gainesville, Florida
January 2000
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CHAPTER 1
The 8051 ARCHITECTURE

1.1 The 8051 Microcontroller
A microcontroller is a single-chip computer.  It is an integrated circuit that combines a
processor and the necessary peripherals, such as code and data memory, parallel
and serial ports, timers, counters, and interrupt logic.  We will discuss and use these
peripherals in the experiments that follow.  Microcontrollers are almost always used
as embedded controllers.  Embedded control refers to a computer system that is
physically put inside the device it monitors and controls.  By their nature, embedded
controllers contain dedicated application-specific software.  In an industrial or
commercial application, code is placed into Read Only Memory (ROM).  ROM is
nonvolatile, i.e. is retained even if power is removed.  On the other hand, Random
Access Memory (RAM) refers to volatile memory, which loses its contents if power is
interrupted.  RAM is useful as a scratchpad to store the run-time variables and
intermediate computation values.  The 8051 has internal ROM and RAM.
Commercial applications may be developed to run with the 8051 in a single-chip
mode.  However, the 8051 also has the capability to interface with external memory.
We will use external memory, more specifically external RAM, to download and run
our programs.  This approach allows us to quickly modify our code and try it on the
hardware.

The 8051 is the oldest microcontroller architecture, developed by Intel in the late 70s.
Over the years, the 8051 has attracted a very wide user base.  There is much public
know-how about the 8051.  Moreover, many variants of the 8051 have been
developed over the years by many manufacturers.  This makes the 8051 architecture
perhaps the most prolific microcontroller family in history.  There are members of the
8051 family with various sizes and types of memory and peripherals, such as more
ports, analog-to-digital converters, high-speed synchronous serial channels, network
interfaces, high-speed mathematical processing units.  The entire family uses the
same architecture and the same instruction set.  This reduces the demands on
software development.  Specialized applications may be pursued by picking the
member of the 8051 family with just the right set of peripherals.

1.2 The Central Processing Unit
Almost all computer systems contain a Central Processing Unit (CPU), memory, and
Input / Output (I/O) devices.  The CPU performs the operations, memory holds code
and data, and I/O devices allow the system to interact with its environment.  The CPU
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endlessly loops through a set of steps, known as the instruction cycle.  The cycle
starts with the processor reading instructions from code memory.  The address from
which the instruction is read is stored in a special register, called the Program
Counter (PC).  The PC is automatically updated by the processor as the instruction
bytes are fetched.  The fetched instructions are interpreted and executed.  The cycle
then repeats.  Instructions may take one or more code bytes, and take one or more
cycles to execute.  The simplest instructions take a single byte of code and execute in
one machine cycle.  The standard 8051 machine cycle is equal to 12 oscillator cycles.
So with a 12 MHz oscillator, the 8051 may perform 1 Million Instructions Per Second
(MIPS).

The status of the 8051 CPU is reflected by the Program Status Word (PSW).  The
PSW is a register, i.e., a memory cell within the 8051.  The PSW contains bit-wide
status information about the CPU.  For example, an external carry generated by an
addition is placed in one of the PSW flags.

Bit 7 6 5 4 3 2 1 0
Flag CY AC F0 RS1 RS0 OV F1 P

Name Carry
Flag

Auxiliary
Carry
Flag

User
Flag

0

Register
Bank
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Register
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Overflow
Flag

User
Flag

1

Parity
Flag

Figure 1.1.  The Fields of the Program Status Word (PSW).

The PSW contains two user flags F0 and F1.  Lastly, the PSW contains a two-bit
control field that selects the active register bank.

1.3 The Programmer’s View of the 8051 Memory
Spaces
The on-chip peripherals distinguish the microcontroller from general-purpose
microprocessors.  These peripherals are accessed by their associated registers,
called the Special Function Registers (SFRs).  In addition, the 8051 has internal RAM
to store variables and data, and optionally, internal code memory to store the
application program.  If the internal memory is sufficient for the application, the 8051
may be operated in the single-chip mode.  Applications that have large memory
requirements are accommodated by the 8051's external memory interface.  Starting
with the 8052, the enhanced versions of the 8051 contain more internal data RAM.
The additional RAM, referred to as indirect data RAM, is also treated differently.

1.3.1 The Harvard Architecture
Some processors, especially most of the general-purpose  processors use a so-
called "linear" memory model.  For example, the "Von Neumann" architecture uses a
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linear memory space.  Code memory and data memory occupies different ranges in
this space.  On the other hand, the "Harvard" architecture distinguishes between code
and data memory.  In this arrangement, knowing its address is not sufficient to
uniquely specify the memory cell.  In addition, we need to specify which memory
space (code or memory) we are dealing with.  Harvard architectures are more reliable
in embedded control.  Isolating code memory, which is almost always placed in ROM,
from data memory introduces an additional level of reliability.

The 8051 does not use a linear memory model.  Rather, the different memory types
are considered to exist in different domains, or memory spaces.  This is a
generalization of the Harvard architecture.  The 8051 has the following memory
spaces:

1. code memory (internal and external)
2. external data memory
3. internal direct memory (internal data RAM and SFRs)
4. internal indirect memory (additional internal RAM of the 8052 and

higher microcontrollers)
5. internal bit memory (overlaps with some of the internal direct

memory)

Consider, for example, the address 29h.  This could be in code memory, external
data memory, internal direct memory, or bit memory.  As mentioned, the address
does not uniquely specify the memory cell.  The memory space is determined by the
instruction that accesses the memory.  The various addressing modes, discussed in
Chapter 2, allow the programmer to access the different memory spaces.  Consider,
for example, the following two instructions, which use the address 29h.

mov  A, 29h    ; A <- direct internal memory
mov  C, 29h    ; C <- internal bit

The first instruction moves the contents of the internal data RAM 29h into the
accumulator.  The second instruction moves a single bit, whose address is 29h, into
the carry flag.  In this case, the memory space is determined by the first operand (C).
The move instruction is said to be context dependent, since the specific action
(memory space) is not evident from the “mov” instruction alone.  The first operand
must be inspected to determine which memory space is involved.  In contrast, the
move instruction for external data memory uses a different instruction mnemonic.

movx A, (source operand) ; A <- external data source operand

In this case, when the assembler parses the “movx” mnemonic, it is already known
that the source resides in external data memory (and hence the ‘x’ suffix).  There is a
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similar instruction, namely “movc” that specifies that the source is in the code memory
space.

Note that code memory is not partitioned into internal and external spaces.  Internal
code memory, if present, starts from address 0.  Internal code memory may also be
disabled by connecting the EA# input pin to ground.  If the code memory address
does not fall in the range of internal code memory, external code memory is
assumed.

The internal direct memory contains 128 bytes of data RAM, occupying addresses 0
to 127.  Internal direct memory also contains 128 bytes of SFRs, in the address range
128 to 255.  The additional 128 bytes of internal data RAM also occupy addresses
128 to 255.  The two memory spaces, SFRs and additional internal data RAM, are
distinguished by the way they are accessed.  If the address is directly given in the
instruction, as in,

mov  A, 90h   ; direct internal memory in the SFR range

then the memory space is internal direct SFR memory.  If the instruction uses the
register indirect addressing mode, as in,

mov  R0, #90h ; constant 90h placed in register R0
mov  A, @R0   ; indirect internal data RAM

then the source byte is in the internal data RAM space.

1.3.2 Register Space
The 8051 architecture and instruction set supports general-purpose registers to
enhance the data processing capabilities.  Registers are addressed in instructions by
their name, rather than by an address.  Most architectures use at least two registers
to carry out operations.  The two operands are placed in the registers and the
operation, say addition, is performed.  The result usually remains in one of the
registers.  In some cases, such as in multiplication, the result occupies both registers.
These two registers are often called the primary and secondary registers.  Typically,
they are designated by ‘A’ (the accumulator) and ‘B’ (the B register).  The 8051
supports this convention.  There are instructions that refer to the A and B registers by
name.  For example,

clr  A

clears the accumulator.  The operand A is really part of the instruction rather than any
direct memory address.  For example,

clr  45h
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does not clear internal data RAM location 45h.  Rather it clears bit 45h.  The MCS-51
instruction set does not include an instruction to clear the contents of an internal data
RAM location.

Although, in principle, two registers are sufficient to carry out the operations, they
become the bottleneck in common applications.  Consider, for example, a loop which
adds the values in a list of known size.  We may place the size of the list in a counter
variable.  We need to perform an addition at each iteration, and then decrement the
loop counter.  If we only had the A and B registers to carry out the operations, the
partial sum needs to be saved at each iteration.  Then the loop counter is copied into
A, decremented, and then compared to zero to see if all values in the list are added.
Otherwise, the loop counter must be moved from A back to its memory address, and
the partial sum copied back to A.  The next value in the list is then copied into the B
register to prepare for the next addition.  Moving the data into and out of A and B
quickly becomes the bottleneck, in the sense that the processor spends more time
moving data around than it does carrying out the operations.

General-purpose registers are similar to the A and B registers.  They are referred to
by their names in the instructions.  The 8051 architecture supports 8 registers, named
R0, R1, ..., R7.  Furthermore, there are four sets of these registers, called the banks.
For instance, in the instructions

mov  R0, A
and

dec  R1

the registers are specified by their names.  Also note that the second instruction,
which decrements R1, actually performs an arithmetic operation on a register.  That is
to say, some operations may be carried out in registers, eliminating the need to first
move the data into the accumulator.  Clearly, these features relax the bottleneck
situation described above.

The banks of 8051 registers are said to overlap internal direct RAM memory.  For
instance, internal RAM locations 0 to 7 correspond to R0 to R7of register bank 0.
That is to say, the same internal direct memory cell, say at location 3, may be
specified by its internal direct address or by the register R3.  Either way, the same
physical cell is involved.  Provided that register bank 0 is selected, the two
instructions below accomplish the same thing.

mov  A, R3
mov  A, 3
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Nevertheless, as we will see in the next chapter, the two instructions are not identical
in their performance.  The first takes one byte of code, and the second, two bytes of
code, to implement.  Referring to registers rather than direct memory usually
produces smaller code and faster execution times.  Similarly, register banks 1, 2, and
3 overlap with internal direct RAM ranges [8..F], [10..17], and [18..1F], all in
hexadecimal.

Table 1.1.  Register Banks.

Internal Data RAM Bank Register Addressing

1F 1E 1D 1C 1B 1A 19 18 3 R7 R6 R5 R4 R3 R2 R1 R0

17 16 15 14 13 12 11 10 2 R7 R6 R5 R4 R3 R2 R1 R0

0F 0E 0D 0C 0B 0A 09 08 1 R7 R6 R5 R4 R3 R2 R1 R0

07 06 05 04 03 02 01 00 0 R7 R6 R5 R4 R3 R2 R1 R0

The active register bank is selected by a two-bit field in the Program Status Word
(PSW).

1.3.3 Bit-Addressable Memory
The 8051 has several bit-oriented features, which come in handy when interfacing
with external inputs and outputs.  Furthermore, the control and status registers
associated with the peripherals contain many single-bit values or flags.  The 8051 has
two bit-addressable regions of direct internal memory.  Each region contains 128 bits.
Sixteen bytes of internal memory, from 20h to 2FH, are bit addressable.  This gives
the first 128-bits.  That is, bit addresses from 0 to 127 are physically the same as the
individual bits of the internal data RAM bytes from 20h to 2Fh.  The rest of the bits,
addresses 128 to 255, are the same as the bits of 16 of the SFRs.  Note that a SFR is
bit addressable if its (byte) address ends with a 0 or 8.  As seen in Table 1.1, the
individual bits of bit-addressable internal data and SFR bytes are assigned
consecutive bit addresses.  For instance, bits 4 and 5 of internal RAM byte 2Bh are
given the bit addresses 5Ch and 5Dh.  Similarly, the SFR E0h corresponds to the
accumulator (ACC).  The bits acc.0, acc.1, ..., acc.7 of the accumulator are given bit
addresses E0h, E1h, ..., E7h.


